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Theoretical Analysis 
of 

Narrow-Band Surface Wave Magnitudes 

1. Introduction 

Surface wave magnitudes are an indispensable tool for discriminating between shallow 
earthquakes and explosions, at least down to body wave magnitude nn, = 4.0. Seismologists have 
exhaustively studied surface wave magnitudes for years (e.g., Gutenburg, 1945; Vanek et al., 
1962; von Seggern, 1977; Okal, 1989; Rezapour and Pearce, 1998; and many others). However, 
operational methodologies for measuring surface waves still rely primarily on measuring 
unfiltered dispersed surface waves in the time domain, primarily in the vicinity of 20-second 
periods. A major problem with this approach is the significant effect of non-dispersed Rayleigh 
waves (Airy phases) which can occur at both regional and teleseismic distances, and can occur 
with dominant periods much less than 20 seconds. Errors introduced by measuring Airy phase 
signals can be greater than 0.5 magnitude units, or greater than a factor of three, which is 
unacceptable for reliable network averaging. Methods have been developed (Marshall and 
Basham, 1972) which apply empirical corrections based on geological regions for signals less 
than 20 seconds, but this only partially addresses the Airy phase problem. 

With digital processing now widely available, we can optimize time domain processing and 
make possible automated routine measurements at variable periods. This paper investigates the 
use of narrow-band Butterworth filters for measuring surface waves, implemented as simple time 
domain digital filters, and pays attention to the effect of filtering on amplitudes and dispersion. 
The starting point is Herrmann (1973), who examined in detail theoretical surface wave envelope 
functions derived from rectangular and Gaussian frequency domain filters, and Yacoub (1983), 
who applied this methodology to automating surface wave measurements between 17-23 
seconds, using narrow-band Gaussian filters. I also demonstrate how to modify currently 
accepted surface wave magnitude formulae to be unbiased with respect to narrow-band filtering 
at variable periods. 

The first portion of the paper focuses on transformations of narrow-band Butterworth filters 
operating on dispersed waveforms from the frequency domain to the time domain, without 
incorporating geometric spreading and attenuation effects. Asymptotic formulae are evaluated 
for simple frequency/time transformations, with corresponding error analysis. 

The second part of the paper reviews surface wave magnitudes from a theoretical point of view, 
by correcting frequency domain amplitudes for dispersion, geometric spreading, and attenuation, 
and showing how this results in currently accepted magnitude corrections. Using the results of 
the first part, narrow-band Butterworth measurements are incorporated into accepted magnitude 
corrections, resulting in a new formula which is unbiased with respect to 20-second 
measurements, at variable periods between 5-25 seconds. 
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2. Surface Wave Amplitudes 

A filtered, dispersed propagating surface wave normal mode can be expressed as (Herrmanrij 
1973): 

a{ttx) = — ]H(QJ)A{co)e,im-kWx)dco (1) 

where cob the angular frequency, H(co) is a band-pass filter symmetric about center frequency 
Gb, A(m) is the complex amplitude of the normal mode, and k(ca) is the wavenumber, A(co) is 
also distance dependent if geometric spreading and attenuation are considered. These 
corrections will be ignored for now to concentrate on the effects of dispersion, and discussed in 
detail in the section on surface wave magnitudes. To approximate the dispersive characteristics 
of the propagating wave, expand the phase as a Taylor series about a center frequency a*, 
ignoring higher order terms beyond the quadratic: 

(ca-kx) = <ßö+ß(a)-co0)-a(co-a)0y (2) 

where (Herrmann, 1973; Aki and Richards, 1980) 

dk 
£0 = 0)Qt - k0x,    ß= t-x 

dco 
t- 

0 U, 
a=- 

x d k 

0 2 dco2 

x T£ dU 

o    touldr 
(3) 

o 

C/is the group velocity and T is the period corresponding to the angular frequency ax Following 
Papoulis (page 123,1962) we make the assumption that H(co) is a narrow-band symmetric filter 
andA(a>) is approximately constant across the bandwidth ofH. Then, substituting (2) into (1) 
and making the variable substitution CO + coo -> Q) gives the following: 

oo 

a(t,x) = V*01 \BL (*) eiißQ}-ao)2)dcD 
71 J 

(4) 

where A0 = A(co0), and HL(co) = H(co+ Wo) is an equivalent low-pass filter. The real part of the 
complex expression (4) is equivalent to (1). The envelope maximum corresponding to the group 
velocity ß= 0 is defined as: 

I    i     A   l 

7t 
JHL(to)e-i0m2d(O (5) 

This expression shows that, for a narrow-band process, the maximum time domain amplitude is 
equivalent to the frequency domain amplitude modulated by two low pass filters: EL and 
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-iao) 
e . For values of co away from the origin, the exponential integrand will rapidly oscillate, 
not contributing to the integral, and thus act as a low pass filter. As a result, the time domain 
amplitude can be controlled by either filter, depending on the value of the cutoff frequency en, of 
HL, or the value of a in the exponent. This can be seen graphically in Figure 1: 

Stationary Phase Integrand 

3 

-0.990385 

-0.04 

Frequency (Hz) 

Alpha Exponent 
""" Low Pass Filter HL 

Figure 1. 

As the value of «increases, the width of the fundamental lobe of the exponential integrand will 
decrease, thus controlling the bandwidth of the recorded amplitude. If the value of the 
bandwidth of HL decreases below the exponential bandwidth, it will control the amplitude of the 
recorded signal. This trade-off can be useful in modifying the dispersion measured on observed 
seismograms, as will be discussed below. 

3. Application of Butterworth Filters 

As a specific case of the low-pass filter HL, let us use a zero phase n* order Butterworth band- 
pass filter of the form (Kanasewich, 1975) 

H(co) = - 
1 

( 
1 + 

O)-O)0 

0), 

\2n (6) 

where 2ö* is the bandwidth about G)0, defined at one-half the amplitude of H(af. Then, 
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HL(co) = 
co. In 

f       \2n 

CO 1 + 

Substituting (7) into (4) gives 
\  c J 

,,2« ,  ,,2n 
CO     +0)c 

(7) 

a(t,x) = A0e
i*> l 1 7       »? 

71 J   m2n + n 

'c et{ßa-a^)da 

CO     + CO, 
In (8) 

Expanding HL as partial fractions and using relationship 7.4.2 from Abromowitz and Stegun 
(1964), a(t,x) can be shown to equal (see Appendix A): 

4a   n 

In 
k=l 

where erfc is defined as the complementary error function (l-erf), 

*-( r- ß   } 

£k=®ce id, 

(9) 

(10) 

(11) 

0* 
7T(2k-n-l) 

2n 
(12) 

and recalling from equation (3) that 

a- 
x T$ dU 

AK Ul dT o 
(13) 

As an example, set (typical for continental crusts) 

X = 6000 km,   T0 = 20 sec,   U0 = 2.9 km/sec, 
dU 

dT 
.02 km/sec (14) 
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Let the order of the Butterworth filter be n = 3, and the corner of the filter fc = .005 Hertz. 
Substituting these values into equation (9) and plotting the real value as a function of/? gives the 
seismogram illustrated in Figure 2. 

Filtered Surface Wave 

-400   -300   -200   -100      0       100     200     300     400 

t-x/U 

Figure 2. 

Notice that the plot has a maximum at the group velocity Uo = x/t. 

4. Asymptotic Values of Filtered Amplitudes 

At the amplitude maximum corresponding to the group velocity (/?= 0), equation (9) reduces to: 

1   " 
a0 = VA - YA^ erfc{4i^ek) 

where 

k=\ 

ek=coce
wr 

0u = 
7t{2k-n-\) 

2n 

(15) 

(16) 

(17) 

For large a^ or a, the following asymptotic form for erfc can be used (Abromowitz and Stegun, 
relation 7.1.23, 1964; Mathews and Walker, page 80, 1970): 

„-w 
erfc(u) « 

4nu 
(18) 
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Letting u=4i(X£k, and substituting (13) and (18) into (15) gives, after some algebraic 
manipulation, 

an 
■yjnia 

2_4A 
dU 
dT 

(19) 

This is precisely the value arrived at by Okal (1989) assuming strongly dispersed surface waves 
(a large). Notice that equation (19) is independent of ah, thus independent of Hi. 

For small values of a in the exponential integrand, it is expected that the main lobe will be wide 
(Figure 1), so the amplitude will be controlled by the low-pass filter HL. Letting a -* 0 in 
equation (15) results in 

a0 = V*—S ^ (20) 
n M 

which is controlled only by the order of the Butterworth filter HL and its comer frequency ah. 
For a 3rd order filter (n = 3), and recalling equation (17), equation (20) immediately reduces to 

\ao \ = AQ^r (21) 

Figure 3 shows the envelope of equation (15) as a function of a, along with the asymptotic 
values (19) and (21), assuming a 3rd order Butterworth filter with a filter corner of 
/c=.005 Hertz: 

Max Amplitude v.s. Alpha 

3 

1-10 

1 .      '           j .1 i i 

:rz:p.^t:|:|i; 

0.1 

i    [       "1 11 f^4. iilh 
0.01 „™. ™.u\. J..:„.:.™V ;„U ~. 

::':5'3E:f'EE::;Bli ~~C'Z     -'-£-    — 

,-3 

i   I      Li 

10 100 1-10 
Alpha 

Butterworth Filter 
""   Small Alpha Asymptote 
— " Large Alpha Asymptote 

Figure 3. 

1*10 
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Notice that the Butterworth filtered surface wave shows almost constant amplitude (minimal 
dispersion) out to a value of a= 800, where the asymptotes intersect. 

For any value of a, eck, and n, this can be generalized as follows: looking only at absolute values, 
rewrite (19) and (21) as 

\a\ = 
-Jmä 

(22) 

\ab\ = A0O)crn ,        r„ =-%e19" =-£cos(0j 

Notice that the exponential term in r„ reduces to the cosine term due to the symmetric 
distribution of flt(see equation 17). Define the asymptotic intercept as the point where the 
equations are equal: 

(23) 

CO jr.. = 
1 

" 4 na 
(24) 

Assuming minimal dispersion for values of «less than the intercept results in 

1 
a< 

7t{cocrn)
2 

or equivalently, 

6>„ < 
"„Jmx 

(25) 

Equation (25) determines the range of cutoff frequencies for which a Butterworth filter can be 
constructed to reduce the dispersion error to a minimum. 

To justify the assumption of minimal dispersion, the absolute error between the Butterworth 
amplitude and the asymptotic value at the intercept can be determined as follows. Evaluate and 
rearrange the Butterworth amplitude (15) at the intercept point (24) as: 

am = A0O)cZn (26) 

where 

Z. = Ijre<(^w/c(Fi) 
je. 

Vi=- 
,Vtf (27) 

It can be seen by inspection that Z'„ is only a function of the Butterworth order n. 
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ERR = LOG(ASYMPTOTE) - LOG(AMPLITUDE) 

Evaluate at the intercept using (23) and (26) for: 

ERR =LOG(A0CDcr„)-LOG{A0cocZn) 

AFTAC-TR-04-004 

or 

ERR = LOG 
KZ»J 

(28) 

Notice that the logarithmic error is only a function of the Butterworth order n. Table 1 gives the 
values of ERR for the first six Butterworth orders: 

Table 1. 
Butterworth Order vs. Log Error 

n 1 2 3 4 5 6 
ERR 0.191 0.0672 0.0360 0.0244 0.0193 0.0168 

For Butterworth filters of order 3 (recommended) or greater, the maximum magnitude error will 
be less than or equal to 0.0360 for values of at, satisfying the inequality in (25). 

5. Surface Wave Magnitudes 

Surface wave magnitudes are generally expressed as distance-corrected logarithmic amplitude 
measurements of surface waves in the time domain, usually measured in the vicinity of 
20-second vertical component Rayleigh waves. Typically, the amplitude measurements are 
corrected for instrument response to either zero-to-peak or peak-to-peak amplitude 
measurements, usually in miilirnicrons or nanometers. Time domain formulae for surface wave 
magnitudes are generally derived from empirical measurements of surface wave amplitudes 
averaged across many events and epicentral distances (e.g., Vanek et al.5 1962; von Seggem, 
1977; Rezapour and Pearce, 1998). 

Surface wave magnitudes can also be derived theoretically by correcting frequency domain 
amplitudes for geometric spreading and attenuation (Kanamori and Stewart, 1976) and then 
transforming to the time domain (Okal, 1989). Let 

m& 

Ac=A^resm(*)eUQT (29) 

where 
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Ac = Corrected frequency domain amplitude 
A - Frequency domain amplitude 
re = Earth's radius 
A = Epicentral distance in degrees 
K = Degree to kilometer conversion (111.2 km/deg) 
T = Period of interest 
Q = Q factor measuring attenuation at period T 
U = Group velocity at period T 

To transform (29) into the time domain, recall the strong dispersion relation for surface wave 
amplitudes (19) (see also Okal, 1989): 

a = Ijrr A (30) 

\dT 

Solve (30) for ,4 and substitute into (29) to arrive at a theoretical expression for corrected time 
domain amplitudes at frequency T: 

\du   A 

ac = aTfiMMe"* ^— (31) 

Taking the base 10 logarithm of (31) results in an expression for surface wave magnitudes: 

MJ=log(flr)+llog(sin(A))+log(e)^+Ilog(A)+logf^y(/ + C (32) 

where constants are now combined in C. The correction terms represent distance adjustments for 
geometric spreading, attenuation, and dispersion. The last term is a period-dependent dispersion 
correction. The undetermined constant C is determined from empirical time domain 
measurements. 

Okal (1989) showed that the attenuation and dispersion terms in (32) are roughly proportional as 
follows when evaluated in the vicinity of 20-secondperiods: 

51og(A) oc -log(sin(A)) + \og(e)j—- + -log(A) (33) 

and 

l0g(l/r2)  oc   log(e)^- + log 
A 

ßl", (34) 
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where B is a constant in (33). It should be noted that Okal also included a source excitation 
correction in (34). However, (34) is a very rough approximation, which depends strongly on the 
value of dU/dT, Notice that for Airy phases, dU/dT-* 0, which can cause large errors in the 
magnitude. 

Substituting (33) and (34) into (32) results in the standard formulation for surface wave 
magnitudes (Vanek et al,, 1962; von Seggern, 1977): 

M. =log(a/r) + 51og(A) + C (35) 

or, if only (34) is used (von Seggern, 1977; Rezapour and Pearce, 1998): 

Ms = log(a IT)+|log(sin(A))+ Botl A + |log(A) + C (36) 

The term 5a«in (36) is a constant defining the attenuation. It should be noted that Rezapour and 
Pearce prefer using a coefficient of 1/3 instead of 1/2 in the dispersion term of (36), in order to 
account for distance effects of Airy phase propagation. 

5.1 Surface Wave Magnitudes from Narrow-band Butterworth Filters 

The theoretical derivation of surface wave magnitudes for narrow-band filters is considerably 
simplified from the above, since the frequency to time-domain transformation is non-dispersive, 
for values of coc satisfying the inequality in (25), Recall the asymptotic value for an n* order 
Butterworth filter (equation 23): 

ab=a>er„A (37) 

where ab is the filtered time domain Butterworth amplitude, and ßi is the Butterworth corner 
frequency. Solving for A and substituting this expression into (29) gives the corrected 
Butterworth filtered time-domain amplitude at period T: 

msA 

a& = 
_    Gb 

Oicrn 

jresm(A)eUßT (38) 

Taking logarithms of (38) results in the time-domain magnitude formula: 

MsW=\og(ab) + hog{sin(A))+log(e)^;-\og{fc)+Cb (39) 

where constants in (38) are now combined in Q,5 and coc= 2Kfc, Notice that the correction terms 
are now geometric spreading, attenuation, and the value of the Butterworth corner frequency. 

10 
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From (39) the final formula for narrow-band filtering with a fixed attenuation coefficient can be 
written as 

Msib)=log(ab) + Uog{sm(A))+Batl^A-log{fc)+Cb (40) 

where it is assumed that variations in the attenuation terms in (39) are small around the reference 
period T0. The constants Batt and Q in (40) can be found by empirically measuring surface wave 
amplitudes ab across different epicentral distances A. 

5.2 Normalizing Butterworth Magnitudes to Standard Magnitude Formulae 

An alternative to determining the constants Batt and Cb empirically is to transform (40) into the 
standard formula (36) at reference period T0, and then calculate the Butterworth constants based 
on standard formula constants. This has the advantage of ensuring that Butterworth magnitudes 
are unbiased with respect to currently accepted magnitudes, at least at given reference periods. 
To accomplish this, first recall the frequency to time transformations given in (22) and (23): 

4na 
ab=(OcrnA (41) 

The first transformation represents surface wave amplitudes measured on essentially unfiltered 
and non-Airy-phase seismograms, and the second is the amplitude measured after Butterworth 
filtering with a corner frequency satisfying the inequality given in (25). Under these conditions 
the unfiltered time domain measurement can be transformed into the filtered measurement by 
equating frequency domain amplitudes in (41): 

ab=[(0crn4jüa)a (42) 

Recalling the definition of a in (3), equation (42) can be rewritten in terms of measured 
quantities as: 

fj4Ä 
at=   °        a (43) 

where G is defined as: 

G=-4L 
\dU 

"\dT 

(44) 

K, A are defined as in (29), and coc= 2nfc. Also using (3), equation (25) can be rewritten as 

li 
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Jc rVÄ 
(45) 

Notice that when the equality holds in (45), ab = a in (43). 

Now, to do the transformation, assume that a large number of measurements have been made at a 
reference period To on a core seismic network, which is distributed across given geographic 
areas, with source/receiver propagation paths representing an average type of geologic structure. 
Define the average group velocity at To for this structure as Uo and its derivative as dU/dT\o. 
Define the corresponding value of G in (44) as Go. Evaluating (43) at Go and T0 and substituting 

' into (40) gives 

Ms=log(ar0) + |log(sin(A)) + J8a„A + |log(A)+C6-log(G0) (46) 

Adding and subtracting \og(To2) in (46) gives 

Ms =log(a/r0) + ^-log(sin(A)) + J5ß„A + ^log(A)+C,-log (47) 

Equating (36) and (47) shows that the two equations are equal at the reference period T0 if Cb is 
defined as 

cA = e+iogf§- (48) 

and Bau is equivalent for both equations. Thus, the Butterworth magnitude (40) can be derived to 
be unbiased with respect to standard magnitudes by defining Go and determining the constant Q, 
from (48). 

Finally, it should be noted that the value of/c bounded in (45) must be calculated from actual 
values of G, T, and A for individual measurements in order to mmimize dispersion error for each 
measurement. However, since (45) is an inequality, if a minimum value Gmin can be found for all 
expected propagation paths, this can be used to define/c as 

f   <       »win 
7e~rV£ 

(49) 

and this will result in minimum dispersion error across the network for all propagation paths, 
given knowledge of T and A for individual events. 

5.3 Butterworth Magnitude Formula at Variable Periods 

It should be emphasized that the above derivation is only valid in the vicinity of20-second 
periods. The above formula should not be extrapolated to short periods without correcting for 
period-dependent source excitation and attenuation. Typically, explosions and shallow 

12 
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earthquakes have source excitation functions which increase by a factor of about 0.2 magnitude 
units from 20- to 10-second periods, and again by 0.2 magnitude units between 10- and 5-second 
periods. Also, numerous studies (e.g., Herrmann and Mitchell, 1975) have shown that the 
attenuation coefficient (km"1) can increase by a factor of three or more from 10- to 5-second 
periods. Therefore, it is advisable to modify equation (40) with functions which adequately 
approximate this behavior, if unbiased short period magnitudes are required. However the 
functions are constructed, they should be normalized at T0= 20 seconds to reflect standard 
magnitude formulae. 

Candidate functions can be constructed with the form T0/T to normalize at T0. To modify the 
attenuation coefficient, the following form is suggested: 

B(T) = Ba 
JL 
T 

(50) 

When T = T0, the function reduces to the constant coefficient Batt. The value of the coefficient y 
can be chosen to reflect the increase the value of the coefficient at shorter periods. 

For the source excitation, the following function can be constructed to correct the magnitude 
formula for typical short period increases in source amplitude: 

(T \ 
S(T) = -S0 log   ° 

. T , \    J 
(51) 

When T - To, the source function contributes no correction and, for other periods, the value S0 

controls the amount of correction at shorter periods. 

With the above corrections, a final form of the Butterworth magnitude formula for variable 
periods can be expressed as follows: 

Mm = log(a6) + - log(sin(A))+Ba 
(T Y _o_ 

T K1 J 
A-S0log 

(T \ 

T 
-\og{fc)+Cb (52) 

J c — rVÄ 
(53) 

To calculate Ms(b), the following steps should be taken: 

- Determine the epicentral distance in degrees to the event A and the period T. 

- Calculate the corner frequency/; of the Butterworth filter from (53). 

- Filter the time series with a zero-phase Butterworth band-pass filter with corner frequencies 
1/T-fc, 1/T+U 

13 
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- Calculate maximum amplitude a* of filtered signal. < 

- Determine MS(b) from (52), 

5.4 Specific Examples 

Three commonly used formulae for surface wave magnitudes (amplitudes measured zero-to- 
peak, in millimicrons) are given by 

Prague (Vanek et aL, 1962): 

Ms =log(o/r) + 1.661og(A) + 0.3 

Von Seggern - normalized to Prague at 50 degrees (von Seggern, 1977): 

Ms = \og{aIT) +-log(sin(A))+ 0.0031A+^log(A) + 2.2 

Rezapour and Pearce (Rezapour and Pearce, 1998): 

Ms=log(a/r)+-log(sin(A))+0.0046A + |log(A) + 2.37 

Plotting the magnitude corrections as a jfunction of epicentral distance gives: 

Surface Wave Magnitude Corrections 

3 

I 
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^* 
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■/ 
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// 
// 

\L : :  
* 
/ 
i 
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Distance (degrees) 

—" Rezapour and Pearce 
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— " Prague 

Figure 4. 

(54) 

(55) 

(56) 
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As can be seen from the figure, the Rezapour and Pearce correction is almost identical to the von 
Seggern correction. Although the Prague formula biases magnitude corrections to oceanic 
propagation paths, it is still used to normalize newer formulae to maintain historical continuity. 
For purposes of this study, the von Seggern formula will be used as a baseline, where Batt = 
0.0031, and C = 2.2. 

To calculate the normalized Butterworth magnitude equation, assume a network defined 
primarily over continental paths, and measured at the reference period 20 seconds. Let: 

To =    20 sec 
Uo =    2.9 km/sec 
(dU/dT)0   =     0.02 km/sec2 

Also assume a 3rd order Butterworth filter. From equations (17) and (23): 

3 2 

k=\ J 

Using the above values, and equations (44) and (48): 

G0 = 0.93, Q = -0.43 

To determine Gmin, use equation (44), and look at values of T, U, and dU/dT'that minimize G for 
various paths and periods in the core network. Setting Gmin= 0.6 should cover continental 
signals between 8 and 40 seconds, and oceanic signals between 20 and 40 seconds, including 
mixed oceanic and continental. This assumes a 20-second oceanic group velocity of U = 
3.6 km/sec and derivative dU/dT = .08 km/sec2. The value ofGmin should be lowered down to 
0.2 or less for deep sediment structures at periods between 5 and 8 seconds, and short period 
oceanic paths between 5 and 20 seconds. 

To determine the period dependent attenuation coefficient, use the form given by (50) and, from 
von Seggern, use Batt = 0.0031 (0.278 x 10"4 km"1). To find y, find the best fit of equation (50) to 
empirical continental attenuation coefficient data. For instance, Herrman and Mitchell (1975) 
published values of anelastic attenuation for the stable interior of North America for both 
shallow earthquakes and nuclear explosions. Plotting the values for Rayleigh wave attenuation 
with Y = 2.3 gives: 
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Figure 5. 

Notice that the value of B(T) in the present study is lower than suggested by Herrmann and 
Mitchell; this is due to forcing the function to fit Batt = 0.0031 (0.278 x 10^ km"1) at 20 seconds. 
The point is to ensure that B(T) adequately reflects the significant increase in attenuation over 
continental paths at short periods. 

To determine the correction for source excitation, use equation (51) and assume the source to be 
a shallow earthquake or explosion. In this case, there should be an increase in-amplitude 
between 20 and 10 seconds by approximately 0.2 magnitude units, with the same increase 
between 10 and 5 seconds. A value of So = 0.66 will correct for this excitation as shown in 
Figure 6: 
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Source Amplitude Correction 

10 15 20        25 
Period (Sec) 

— Correction: -0.66*log(T0/T) 

Figure 6. 

Combining all of the above into (52) and (53) results in the Butterworth magnitude formula: 

1 f20Y'3 

Ms(b) = log(aÄ)+-log(sin(A))+ 0.0031 —     A-0.66 log 
T 

f20" 
T \ l ) 

-log(/J-0.43 (57) 

J c 

0.6 
(58) 

Again, it should be noted that a value of Gmin = 0.6 should be valid for most continental paths 
with 8 < T< 25 seconds, and oceanic paths with T > 20 seconds. For paths in deep sediments 
with 5 < T< 8 seconds, and oceanic paths with 5 < T< 20 seconds, a value of Gmin = 0.2 should 
be more appropriate to reflect the strong dispersion present. Also note that the use of this 
formula will fully correct measurement errors due to Airy phases. 

6. Summary 

In summary, the above theory gives a method to calculate surface wave magnitudes over broad 
period and distance intervals. The fundamental goals of the study were to develop a surface 
wave methodology which can: 

- Measure signals in the time domain with minimum digital processing using Butterworth 
filters. 

- Effectively measure unbiased surface wave magnitudes at both regional and teleseismic 
distances, while being applicable across a wide range of periods. 
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- Ensure that the formula is unbiased with respect to accepted formulae at reference periods, 
providing historical continuity. 

With rough estimates of group velocity and derivative bounds, the formula is unbiased with 
respect to standard 20-second historical Admeasurements, down to 5-second periods and 
distances of less than 200 km. The strength of the method is that it solves the problem of trying 
to simultaneously measure in the time domain well-dispersed surface waves at teleseismic 
distances with non-dispersed or Airy phases at regional distances. The weakness of the 
methodology at this point is the analysis of attenuation. Although the above formula (equation 
50) compensates for attenuation down to 5 seconds on continental structures, it is clearly 
oversimplified for both regional and teleseismic distances and is the largest remaining source of 
error for surface wave magnitudes. More study is needed to define regionally varying 
propagation paths, including oceanic, deep sediments, and basin and range structures, with 
emphasis on analyzing variability between 5-25 seconds across these paths. To account for 
regionally varying attenuation, the theoretical attenuation term in (39) can be regionalized as: 

log(e)^y 

UQT 
A-tB^A (59) 

where 

B>j(T) = 
\og(e)7tK 

U(T)QJT)T 
(60) 

In (60), both U(T) and T can be determined directly from individual narrow-band filtered 
seismograms; however, what must be understood is the variability of Q over multiple 
source/receiver paths ij at different periods T. 

18 



AFTAC-TR-04-004 Theoretical Analysis of Narrow-Band 
Surface Wave Magnitudes 

Appendix A 

Derivation of Filtered Surface Wave Integral 

The purpose of this appendix is to derive the solution to the integral 

oo n 

(61). 

where 

ß = t- 

Start with the 1* order Butterworth filter integral 

Un 

ril 
OO ry 

2 2 
CO    + C9Z 

—OO c 

c       eKßa>-aa?) d(Q 

This integral can easily be shown to be equivalent to the time domain convolution 

ß2 

Il=9k.e-°>c\ß\ *   i   ^ 
2 4ina 

which can be expressed as 

T <°C f    ■ 

2-Ji7rrr. J 

iß-rf 
-COM cl I e    4a   dt 

or 

h = 
G>„ 

2V incc 

iß-rf iß+r? 
je-a>J e

l   4a   dr + je-^e1   4"   dt 

The first integral in (63) can be rewritten as 

(62) 

(63) 

[11 = 'e 

0 
J 

:a2 r i    2   (iß        \   iß' —r ——+o)c \c+— 
\4a      \2a 4a JJT 
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Using relationships in Abromowitz and Stegun (1964), equation (64) has a solution 

I\ i = 4i7ta e 

,ß2J.rz-..iß i-—+i 
4a l4a 1 erfc r( r       ^ 

i4a M 

(65) 

where erfc is the complementary error function (1 - erf). 

Following the same analysis for the second integral in (63) results in 

■ß1   ■( r       ^ ) is—+i\ -jam, — r 

r       4a   {      c   2fa~) 
erfc 

'    ( iß ^ 

L     V l4ä /-i 
(66) 

Adding (65) and (66) and substituting back into (63) gives, after rearranging and grouping terms 

L=^e^ >2 ^erfc&i (+/?))+ e^ ^erfc^i (rß)) (67) 

where 

.71 

Vl(±ß) = e* 4tt(0r ± i 
l4ct, 

Equation (67) is the solution to the 1st order Butterworth integral (62). To solve for the nft order 
Butterworth integral, expand out the Butterworth integrand in equation (61) as partial fractions: 

(o. In 

,2n 

1    * 

n       „4-4, 
el 

3. , „2 
(68) 

co"" + to""    nk=i®+£k 

where 

Ei. = CO^e 
i8, 

and 

eh 
n{2k-n-\) 

2« 
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Substitute (68) into (61) for 

£k    Ußca-aco2) 
2 , „2 

dco 
~\n L°> +£k 

(69) 

The integral in (69) is now equivalent to the 1st order Butterworth integral in (62) which has the 
solution (67). Substituting (67) into equation (69) gives the final result: 

, 4a JL 
In = 

In 
■£** le^^erfci^i+ß^+e^^erfc^i-ß)) 
k=\ 

(70) 

where 

2s}a 

?k =<°ce idu 

Q      7t{2k-n-\) 
at =  

In 
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Appendix B 

Digital Butterworth Filters 

Software for constructing digital Butterworth filters is both widely available and simple to 
construct in terms of recursive infinite impulse response (IIR) filters. Kanasewich (1975) and 
many others discuss the construction of these filters in detail, and it is assumed that the reader is 
familiar with these algorithms. However, for constructing narrow band-pass filters, it is 
important to point out several issues in transforming continuous frequency domain filters into 
equivalent discrete digital time domain filters that can affect this study. To accomplish this, a 
review of the basic steps involved in Butterworth digital filter construction is appropriate. ' 

B.l Low-pass Filter Design 

a.    Start with the square of the transfer function for a low-pass filter (see equation 7): 

H
L =     ,     v« (71) 

' co * 
1 + 

CO 
V   c J 

It is usually assumed that the square root of (71) represents the amplitude spectrum for a causal 
one-way Butterworth filter. However, for this study, only zero-phase non-causal filters are 
assumed, realized by applying a 'causal'fitter and then the conjugate reverse phase filter, so 
(71) represents the actual amplitude spectrum for the zero-phase filter. 

b. Transform the filter into the Laplace domain with the variable substitution: 

.co u 1 
s = i—   ->   H, = — nr\ 

coc 
L    l + (-l)V y   } 

c. Since (72) is a real function, it can be factored into a polynomial with its conjugate. The 
polynomial with roots on the left side of the complex plane can be used to construct a stable, 
causal digital filter: 

B(s)B*(s) Ll    B(s) K'3) 

d. To transform Hu into a digital filter, use the bilinear z transform for a digital sampling 
interval^: 

2 l-z _sd, 
dtl + z K   ' 

e. Substitute (74) into (73) for an equivalent digital filter 
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n 

I». 
TT _ k=0 
n UZ) ~ n 

(75) 

Since z is just the Laplacian time shift operator, (75) can easily be set up as a recursive filter for 
an input signal X(z) as: 

\ + ±akz
k V(z) = \%bkz

k k(z) 
*=i k=Q 

(76) 

f. To run the filter, transform (76) into the time domain, set initial conditions, and then 
update y(t) with past values as a recursive filter.  . 

g. Finally, to run a zero-phase filter, reverse the filtered output y(t) into x(t), rerun (76), and 
then reverse the filtered output y(z) again. Again, notice that this will have a Butterworth filter 
amplitude spectrum given by (1). 

For brevity, the above review is very condensed, and does not include methods to prewarp the 
Butterworth cutoff frequency cac to account for non-linearity in the bilinear z transform; and 

'methods to cascade the Laplace filter into smaller polynomials to provide more stable time  
domain filters. See Kanasewich (1975) for details. 

B.2 Band-pass Filter Design 

The standard approach to constructing a band-pass digital filter is similar to the steps for the low- 
pass design, except for step b, where a Laplace transform is substituted which maps a band-pass 
filter with corners oo\ and 0)2 into a normalized low-pass filter. 

a.   The transform that maps the band-pass into low-pass is 

, co _ s + co]co2 

coc    s{co^-co2) 
(77) 

b.   Substituting (77) into (71) gives: 

HB=- 

1 + C-l)" 
f 2 \2* 
' S   +(OxCD2   

A 

(78) 

s{cox - w2) 

c.   Follow steps c through g under the low-pass design to realize the digital band-pass filter. 
Notice from (78) that when factoring the Laplace polynomials into conjugate functions in (73), 

24 



AFTAC-TR-04-004 Theoretical Analysis of Narrow-Band 
Surface Wave Magnitudes 

there will be a factor of/" in the numerator for the bandpass design. Again, see Kanasewich 
(1975) for detailed steps in constructing the digital filter. 

B.3 Issues 

One of the problems in using (78) in the construction of narrow-band time domain recursive 
filters is the size of the Laplace polynomial. From (78) it can be seen that the maximum order of 
the polynomial in the denominator will be s4" instead of s2n as in the low-pass case. Although 
some stability can be gained by cascading filters down to order 2, numerical instability can be a 
significant issue when using single precision processing with very narrow band-pass filters, 
when the filters are transformed into recursive form via (74) and (75). It is essential that' 
computer routines that design and execute recursive band-pass filters with a basic form given by 
(78) be double precision for all floating-point operators. In addition, for long period 
calculations (>10 sec) it may be necessary to decimate the time series to 4 samples/sec or less to 
ensure stability. 

Another issue in using (78) is the non-linearity in transforming a symmetric band-pass filter of 
the form given by (6) into the modified form (78). Recall that the original band-pass filter (6) 
was transformed into a low-pass filter by a simple shift in the frequency domain equation (4). 
Equation (6) is 

H*W =     f    
1      o, (79) 

1 + 
O)-CO0 

V CO, 

and can clearly be seen as symmetric about COQ. NOW, it can easily be shown that (78) has the 
following form for its amplitude spectrum. Let cox = co0 -coc, and co2 = co0 + coc. Then 

H*W=    , , 1 w (80) 
1 + 

CO -coxco2 

oico2 - cox) 

It is not obvious, but it can be demonstrated that H2 is symmetric in log-frequency. 

For applications in this report, it is instructive to plot (79) and (80) in a worst case scenario, 
when the Butterworth cutoff frequency/c has the maximum width and T is at the shortest period 
(5 seconds). Assume a 3rd order Butterworth, and let/0 = 0.2 Hz,/C = 0.085 Hz. Plotting in 
linear and log frequency gives: 
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From Figure B-l, it would appear that there is a significant effect due to how the band-pass filter 
is constructed; however, this is only pronounced due to expanding small changes with the 
logarithmic scale on the amplitude axis. Fast Fourier transforming the above frequency filters 
into the time domain to give the impulse response show that for purposes of measuring 
magnitudes, the above effects cause only 2   order changes in the time domain: 

53 -a 
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    HI 
"    H2 

Figure B-2. 

Again, the above is the worst-case scenario. As the period increases and the filter width 
decreases, it can be shown that the difference between H\ and H2 decreases. In addition, running 
synthetic seismograms with both source excitation and attenuation built in show less than .01 
magnitude difference when filtered with H\ and Hi, 
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B.4 Alternative Time Domain Recursive Filter 

As an alternative to the standard IIR design given above, a different transformation can be used 
to design a recursive narrow-band filter which has the following advantages for operational 
processing: 

- The filter response is equivalent to (79), following the exact theory in this report. 

- The filter is built as cascaded first order filters instead of quadratic filters, thus improving 
the precision for very narrow-band applications. 

- The filter returns a complex time domain response, which can be used to extract the real 
filtered response and its envelope function without resorting to Fast Fourier transforms. 

- The algorithm has been successfully tested for narrow-band applications in this report, for 
periods between 5 and 40 seconds, and sampling rates up to 40 samples/second, without 
requiring decimation. 

The basic steps to construct the filter are: 

a. Transform the low-pass into band-pass as: 

. co     s-iO)n 
P = i— = - (81) 

or equivalently 

s = pcoc+iü)0 (82) 

This formula represents a simple translation of a low-pass filter from the origin to Cö0, resulting in 
a complex band-pass filter. Note that this is similar to using the positive half of the Fourier 
spectrum to form a complex time series, in order to calculate the Hubert transform for the time 
series envelope function (Papoulis, page 124, 1962). 

b. Substitute (81) into (71) for 

"■ - T^kr -     Lf (83) 
"o 

V        c     J 

c.   Equation (83) can be factored into poles by first finding the polespj for the prototype 
low-pass filter in (83) (Kanasewich, page 181, 1975) and then substituting these poles into 
equivalent band-pass poles in (82), resulting in the form 
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HB=- 
co: 2« 

Sj=pjO)c+ia}0 (84) 

d.  Equation (84) can then be cascaded into simple first order filters 

0) IT   C 

SSj 
(85) 

which can be transformed into time domain recursive filters of the form (76) using the bilinear 
z-transform (74). 

e.   Finally, after successively running the cascade recursive filters and then reversing for 
zero phase, the real part of the complex time series can be extracted for the narrow-band filtered 
signal, and the modulus of the series can be calculated for the envelope function. 

B.5 Alternative Recursive Filter Coding Algorithm 

To realize the above filter, a simple algorithm can be constructed which can be easily coded into 
C or FORTRAN code: 

- Define the following variables and vectors -  _..     . _.     

INTEGER: 
m   =   Butterworth order 
n   =   number of time series points 
j,k =   counters 

REAL 
dt = sampling interval 
wo = Butterworth band-pass center frequency {2itfo) 
co£ = Butterworth band-pass comer frequency (27tfc) 
xr(n) = input unfiltered time series 
yr(n) = output filtered time series 
er(n) = output envelope time series 
ermx = maximum value of envelope series 

COMPLEX DOUBLE PRECISION 
p(m)    - prototype low-pass Butterworth poles 
s(m)    = equivalent band-pass Butterworth poles 
a\(m) = Z-transform recursive coefficients 
al(m) = Z-transform recursive coefficients 
z\ (n)   = complex time series 
z2(n)   = complex time series 
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- Calculate complex poles of Butterworth polynomial 

Pj = exp 
in 

2m 
j = l,2.../w 

Sj=pJo)e+iaj0 

- Calculate complex bilinear z-transform recursive coefficients 

i ®c* •    t * 

2 + s,dt 
al,= J— J     2-s.dt 

- Place input time series xr into real part of zl 

z\k = xrk k-1,2...« 

Calculate m cascaded first order filters 

j= 1,2.. .m; 
z2k = z\k k = 1,2...« 

zlk=alj{z2k +z2k_})+a2jzlk_, £ = 2,3...« 

zl, =aly.z2, 

- Reverse complex time series 

k = 1,2...« 

- Calculate m reversed first order filters (al*,a2* complex conjugates of al,a2) 

z2k = zl,,^, 

k = 1,2...« 
7 = l,2...m; 

zlk=z2k 

z2, = al*zl, 

z2k = al){zlk + zlk_i)+a2)z2k_ 

- Reverse complex time series 

2\k = z2n_k+l k = 1,2...«    . 

k = 2,3...« 
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- Calculate output real time series, envelope, and envelope maximum 

yrk = 2 REAL{z\k) k = 1,2...« 

erk=2\zlk\ 

ermx = MAX [erk, ermx) 

NOTE: For applications given in this report, bilinear z-transform pre-warping (Kanasewich, 
page 192, 1979) is not required for the above recursive algorithm, due to the low-pass filter 
being designed well below the Nyquist frequency. 
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